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Introduction aux ÉDP Master 1

Feuille d'exercices no 3. Exemples d'EDP: Transport, ondes, Laplace et chaleur.

Compléments sur la transformée de Fourier.

Dans tout ce qui suit, N désigne un entier naturel non nul et Ω un borélien de RN . Sauf mention

contraire on intégrera toujours par rapport à la mesure de Lebesgue.

Exercice 1. Conditions de saut.

1. On rappelle que H := 1R+ désigne la fonction de Heaviside. Retrouver H ′.

2. Soit f : R → R continue. On se donne x0 : R → R homéomorphisme croissant de classe C1 et

(u−, u+) ∈ R2. À quelle condition la fonction

u : R2 → R , (t, x) 7→

{
u− si x < x0(t)

u+ si x ≥ x0(t)

dé�nit-elle une solution au sens des distributions de ∂tu + ∂x(f(u)) = 0 ?

Exercice 2. Equation non linéaire

On considère maintenant l'équation non linéaire{
∂tu(t, x) + ∂x

(
F
(
u(t, x)

))
= 0, t ∈ R+, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(1)

où u0 : R → R et F : R → R sont deux fonctions données. On suppose que F est de classe C2(R) et

on note c = F ′.

1. Caractéristiques. On suppose que u est une solution de classe C1 de (1). On dé�nit les courbes

caractéristiques X(t, x) pour tout x ∈ R,{
∂tX(t, x) = c

(
u(t,X(t, x))

)
,

X(0, x) = x
(2)

Calculer u(t,X(t, x)) puis X(t, x) en fonction de u0.

2. Dans la suite, on suppose que u0 est de classe C1, bornée et à dérivée bornée sur R.

On dé�nit le temps T ∗ par

T ∗ =

{
+∞ si c(u0) croissante
− 1

infR
d
dx

(c(u0))
sinon (3)

Montrer qu'il existe Y ∈ C1([0, T ∗[×R) tel que pour tout t ∈ [0, T ∗[, tout x ∈ R, tout y ∈ R,

y = X(t, x)⇐⇒ x = Y (t, y).

3. Montrer qu'il existe une unique solution u ∈ C1([0, T ∗[×R) à (1).

4. Montrer que si T ∗ < +∞, alors limt→T ∗ ‖∂xu(t, ·)‖L∞(R) = +∞.
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Exercice 3. Équation des ondes

On s'intéresse au problème de Cauchy pour l'équation des ondes homogène en dimension 1 :
∂2u
∂t2

(x, t)− c2 ∂2u
∂x2

(x, t) = 0 ∀(x, t) ∈ R×R
u(x, 0) = u0(x) ∀x ∈ R
∂u
∂t (x, 0) = u1(x) ∀x ∈ R.

avec c 6= 0. On suppose que u0, u1 ∈ S(R) et que le problème admet une solution u ∈ C2(R+,S(R)).

1. On considère la transformée de Fourier pour la seule variable x, i.e.

û(ξ, t) = (Fxu)(ξ, t) =

∫
R
u(x, t)e−ixξdx, ∀(ξ, t) ∈ R×R

Déterminer l'équation di�érentielle satisfaite par t 7→ û(ξ, t) pour tout ξ ∈ R.

2. En déduire que pour tout (ξ, t) ∈ R×R (en utilisant un prolongement adéquat en ξ = 0) :

û(ξ, t) = û0(ξ)
eicξt + e−icξt

2
+ û1(ξ)

eicξt − e−icξt

2icξ

3. Conclure que la solution u véri�e pour tout (x, t) ∈ R×R la formule de d'Alembert :

u(x, t) =
u0(x+ ct) + u0(x− ct)

2
+

1

2c

∫ x+ct

x−ct
u1(s)ds

4. Réciproquement, montrer que cette fonction est bien dans S(R) et véri�e le problème de Cauchy.
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Exercice 4. Transport à coe�cient constant.

Soit u0 ∈ S(RN ). Supposons que u ∈ C∞(R×RN ) ∩ C2(R;S(RN )) véri�e :

∂t u + a · ∇x u = 0 et u(0, ·) = u0, a ∈ CN . (4)

Déterminer û en fonction de û0, puis u en fonction de u0 (et véri�er qu'il s'agit bien d'une solution

classique satisfaisant les hypothèses de l'énoncé).

Exercice 5. Solutions fondamentales du laplacien.

On suppose N ≥ 2, on note αN le volume de la boule unité de RN et l'on dé�nit

E : RN → R , x 7−→

{
−1
2π log(‖x‖) si N = 2

1
N(N−2)αN

1
‖x‖N−2 si N ≥ 3

.

1. Justi�er que E ∈ L1
loc(R

N ).

2. Montrer que ∆E = δ0.

Exercice 6. Équation de la chaleur.

Soit u0 ∈ S(RN ). Supposons que u ∈ C∞(R+ ×RN ) ∩ C2(R+;S(RN )) véri�e

∂t u − ∆x u = 0 et u(0, ·) = u0 . (5)

Déterminer û en fonction de û0, puis u en fonction de u0 (et véri�er qu'il s'agit bien d'une solution

classique satisfaisant les hypothèses de l'énoncé).

Exercice 7. Quelques calculs explicites pour la transformée de Fourier.

1. Soit a > 0. Calculer la transformée de Fourier de la fonction indicatrice 1[−a,a].

2. Calculer la transformée de Fourier de f : R→ R, x 7→ e−|x|.

3. En déduire que f véri�e f − f ′′ = 2δ0 au sens de S ′(R).
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Exercice 8. Principe d'incertitude d'Heisenberg

1. Soit f ∈ S(R) à valeurs complexes. Montrer que(∫
R
x2|f(x)|2dx

)(∫
R
ξ2|f̂(ξ)|2dξ

)
≥ 2π

(∫
R
xRe

(
f̄(x)f ′(x)

)
dx

)2

.

2. En déduire (∫
R
x2|f(x)|2dx

)(∫
R
ξ2|f̂(ξ)|2dξ

)
≥ π

2

(∫
R
|f(x)|2dx

)2

.

3. Déduire de ce qui précède une minoration de(∫
R

(x− x̄)2|f(x)|2dx
)(∫

R
(ξ − ξ̄)2|f̂(ξ)|2dξ

)
pour x̄, ξ̄ ∈ R.

4. On suppose que
∫
R |f(x)|2dx = 1. Montrer que la quantité ci-dessus est minimale lorsque

x̄ =

∫
R
x|f(x)|2dx et ξ̄ =

∫
R
ξ|f̂(ξ)|2dξ.

5. Calculer

inf

(∫
R

(x− x̄)2|f(x)|2dx
)(∫

R
(ξ − ξ̄)2|f̂(ξ)|2dξ

)
lorque x̄ et ξ̄ sont choisis comme dans la question précédente et que f décrit l'ensemble des fonctions

de S(R) telles que
∫
R |f(x)|2dx = 1.

Indication. On pourra étudier le cas où f est une gaussienne.
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